Canonical and alternate functions of the microRNA biogenesis machinery.

نویسندگان

  • Mark M W Chong
  • Guoan Zhang
  • Sihem Cheloufi
  • Thomas A Neubert
  • Gregory J Hannon
  • Dan R Littman
چکیده

The canonical microRNA (miRNA) biogenesis pathway requires two RNaseIII enzymes: Drosha and Dicer. To understand their functions in mammals in vivo, we engineered mice with germline or tissue-specific inactivation of the genes encoding these two proteins. Changes in proteomic and transcriptional profiles that were shared in Dicer- and Drosha-deficient mice confirmed the requirement for both enzymes in canonical miRNA biogenesis. However, deficiency in Drosha or Dicer did not always result in identical phenotypes, suggesting additional functions. We found that, in early-stage thymocytes, Drosha recognizes and directly cleaves many protein-coding messenger RNAs (mRNAs) with secondary stem-loop structures. In addition, we identified a subset of miRNAs generated by a Dicer-dependent but Drosha-independent mechanism. These were distinct from previously described mirtrons. Thus, in mammalian cells, Dicer is required for the biogenesis of multiple classes of miRNAs. Together, these findings extend the range of function of RNaseIII enzymes beyond canonical miRNA biogenesis, and help explain the nonoverlapping phenotypes caused by Drosha and Dicer deficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Mirtron Pathway Generates microRNA-Class Regulatory RNAs in Drosophila

The canonical microRNA (miRNA) pathway converts primary hairpin precursor transcripts into approximately 22 nucleotide regulatory RNAs via consecutive cleavages by two RNase III enzymes, Drosha and Dicer. In this study, we characterize Drosophila small RNAs that derive from short intronic hairpins termed "mirtrons." Their nuclear biogenesis appears to bypass Drosha cleavage, which is essential ...

متن کامل

The microRNA biogenesis machinery: regulation by steroid hormones and alterations in cancer.

MicroRNAs are a class of non-coding RNAs that regulate gene expression at the post-transcriptional level. The major proteins of the canonical microRNA biogenesis pathway in human are: Drosha, DGCR8, DDX5, DDX17, Exportin 5, Dicer and Argonaute 2. Recent studies suggest that gene expression of some canonical microRNA biogenesis components could be regulated by steroid hormones. Furthermore, vari...

متن کامل

Image processing by alternate dual Gabor frames

‎We present an application of the dual Gabor frames to image‎ ‎processing‎. ‎Our algorithm is based on finding some dual Gabor‎ ‎frame generators which reconstructs accurately the elements of the‎ ‎underlying Hilbert space‎. ‎The advantages of these duals‎ ‎constructed by a polynomial of Gabor frame generators are compared‎ ‎with their canonical dual‎.

متن کامل

MicroRNA biogenesis: Epigenetic modifications as another layer of complexity in the microRNA expression regulation.

Since their discovery, microRNAs have led to a huge shift in our understanding of the regulation of key biological processes. The discovery of epigenetic modifications that affect microRNA expression has added another layer of complexity to the already tightly controlled regulatory machinery. Modifications like uridylation, adenylation and RNA editing have been shown to have variable effects on...

متن کامل

Dysregulation of microRNA biogenesis in cancer: the impact of mutant p53 on Drosha complex activity.

A widespread decrease of mature microRNAs is often observed in human malignancies giving them potential to act as tumor suppressors. Thus, microRNAs may be potential targets for cancer therapy. The global miRNA deregulation is often the result of defects in the miRNA biogenesis pathway, such as genomic mutation or aberrant expression/localization of enzymes and cofactors responsible of miRNA ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 24 17  شماره 

صفحات  -

تاریخ انتشار 2010